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NASA constantly confronting 
massively challenging 
computational problems
• Computational capacity limits 

mission scope and aims

NASA’s Pleiades
One of the top 25 fastest 
supercomputers in the 
world

NASA QuAIL mandate: 
Determine the potential for 
quantum computation to enable 
more ambitious and safer NASA 
missions in the future

Quantum-enhanced 
applications

QC programming

Fundamental quantum 
physics mechanisms

Analytical methodsSimulation tools

NASA Ames QuAIL team

NASA’s Stake in Quantum Computing

Quantum, hybrid quantum-
classical, and  physics-
inspired classical algorithms



Quantum Computing in one slide
The power of quantum computation comes from 
encoding information in a non-classical way 
Quantum computers take advantage of quantum 
effects not available classically 
These effects can provide more efficient 
computation and higher levels of security than 
is available classically

What Shor’s factoring algorithm can compute in days, 
would take a supercomputer longer than the age of 
the universe

Breaks all public key encryption in standard use

The art of quantum algorithm design is figuring 
out how to harness peculiarly quantum 
properties for computational purposes

Pool of quantum properties

Quantum interference

Quantum entanglement

Quantum measurement

Non-commutative quantum operators

Quantum adiabatic theorem

Quantum discord

Quantum tunneling

Quantum no cloning theorem

Quantum sampling

Quantum population transfer

Quantum many-body delocalization



Outline of talk

Part I: High-level discussion of quantum computing

Part II: Basic concepts in quantum computing

Part III: NASA QuAIL Research Overview 



Birth of quantum computing
• Feynman and Manin recognized 

in the early 1980s that certain 

quantum phenomena could not 

be simulated efficiently by a 

computer

- Phenomena related to quantum 

entanglement; Bell’s inequality

- Reason materials are hard to simulate at 

the quantum level

• Perhaps these quantum 

phenomena could be used to 

speed up more general  

computation?



Computers as classical mechanical machines
• Babbage’s analytical engine was 

a classical mechanical machine

• Turing machines

- The abstraction that underlies 

complexity theory and universal 

computing machines

- Firmly rooted in classical mechanics

- Described in classical mechanical terms

• Abstraction allowed us ignore how classical computers are 

implemented physically

• When we program we don’t think about the fundamental physics

• How do different models of physics affect how quickly 
we can compute 

Babbage engine
(Computer History 

Museum)



What a quantum computer is not
Just because a computer uses quantum effects, does not 

mean it is a quantum computer
All the computers in this building make use of quantum effects
The fundamental unit of computation, the bit, and the algorithms we design for 

computers did not change when quantum effects were used
A quantum computer has a fundamentally different way 

of encoding and processing information
Quantum computers are quantum information processing devices
They process qubits instead of bits
They use quantum operations instead of logic gates

Also, just because a piece of hardware has a certain 
number of qubits, it isn’t necessarily a quantum 
computer
A set of light switches, even a very large set, is not a classical computer



Certainty and randomness in quantum 
computation 
• Any computation a classical computer can do, and 

quantum computer can do with roughly the same 

efficiency

- With the same probability of the outcome

- if the classical computation is non-probabilistic, so is the quantum one

• Like classical algorithms, some quantum algorithms 

are inherently probabilistic and others are not

- First quantum algorithms were not probabilistic

- E.g. Deutsch-Jozsa algorithm solves problem with certainty that classical 

algorithms, of equivalent efficiency, could solve only with high probability

- Shor’s algorithms are probabilistic

- Grover’s is not intrinsically probabilistic

- initial search algorithm was probabilistic, but 

- slight variants, which preserve the speed up, are non-probabilistic



Quantum 
computing can do 
everything a 
classical 
computer can do

and
Provable 
quantum 
advantage known
for a few dozen 
quantum 
algorithms

Unknown quantum advantage
for everything else
Status of classical algorithms
• Provable bounds hard to obtain

– Analysis is just too difficult
• Best classical algorithm not known for most 

problems
• Empirical evaluation required
• Ongoing development of classical heuristic 

approaches 
– Analyzed empirically: ran and see what happens
– E.g. SAT, planning, machine learning, etc. 

competitions

• NISQ era supports unprecedented means 
for empirical analysis of quantum 
algorithms 
– Quantum heuristics come into their own

A handful of 
proven 
limitations 
on quantum 
computing

Current status of quantum algorithms

Conjecture: Quantum Heuristics will significantly broaden 
applications of quantum computing



General Purpose:
Universal quantum processors

Google Rigetti

Special Purpose:
E.g. Quantum 
annealers

D-Wave

Noisy 
Intermediate-

Scale 
Quantum 

(NISQ)
devices

Quantum hardware
Superconducting processors
- Google, IBM, Rigetti, Intel, …

Trapped ion processors
- IonQ, Honeywell, …

Other approaches
- Optical
- Electron spins in silicon 
- Topological, anyon based quantum computing

Number of qubits alone is not a good measure
- Analogy: billions of switches do not a classical computer 

make

Other key factors
- precision, speed, and generality of the control

- particularly operations involving multiple qubits
- how long quantum coherence can be maintained
- stability over time
- speed with which processors can be calibrated



… but not useful quantum supremacy.
• Currently too small to be useful for solving 

practical problems
• Early application to certified random number 

generation, but other applications require larger, 
more capable devices

Uses of these still limited, quantum devices? 

(1) Unprecedented opportunity to explore and 
evaluate algorithms, both quantum and hybrid 
quantum-classical heuristic algorithms

(2) Investigate quantum mechanisms that may be 
harnessed for computational purposes

Insights gained feed into next generation
• quantum algorithms
• quantum hardware

Early target: Optimization; Sampling & Machine 
Learning; simulation of quantum systems

Quantum computing has entered the NISQ Era
Quantum supremacy has been achieved!
• Perform computations not possible 

on even the largest supercomputers 

Nature | Vol 574 | 24 OCTOBER 2019 | 505

Article

Quantum supremacy using a programmable 
superconducting processor

Frank Arute1, Kunal Arya1, Ryan Babbush1, Dave Bacon1, Joseph C. Bardin1,2, Rami Barends1, 
Rupak Biswas3, Sergio Boixo1, Fernando G. S. L. Brandao1,4, David A. Buell1, Brian Burkett1,  
Yu Chen1, Zijun Chen1, Ben Chiaro5, Roberto Collins1, William Courtney1, Andrew Dunsworth1, 
Edward Farhi1, Brooks Foxen1,5, Austin Fowler1, Craig Gidney1, Marissa Giustina1, Rob Graff1, 
Keith Guerin1, Steve Habegger1, Matthew P. Harrigan1, Michael J. Hartmann1,6, Alan Ho1, 
Markus Hoffmann1, Trent Huang1, Travis S. Humble7, Sergei V. Isakov1, Evan Jeffrey1,  
Zhang Jiang1, Dvir Kafri1, Kostyantyn Kechedzhi1, Julian Kelly1, Paul V. Klimov1, Sergey Knysh1, 
Alexander Korotkov1,8, Fedor Kostritsa1, David Landhuis1, Mike Lindmark1, Erik Lucero1,  
Dmitry Lyakh9, Salvatore Mandrà3,10, Jarrod R. McClean1, Matthew McEwen5,  
Anthony Megrant1, Xiao Mi1, Kristel Michielsen11,12, Masoud Mohseni1, Josh Mutus1,  
Ofer Naaman1, Matthew Neeley1, Charles Neill1, Murphy Yuezhen Niu1, Eric Ostby1,  
Andre Petukhov1, John C. Platt1, Chris Quintana1, Eleanor G. Rieffel3, Pedram Roushan1, 
Nicholas C. Rubin1, Daniel Sank1, Kevin J. Satzinger1, Vadim Smelyanskiy1, Kevin J. Sung1,13, 
Matthew D. Trevithick1, Amit Vainsencher1, Benjamin Villalonga1,14, Theodore White1,  
Z. Jamie Yao1, Ping Yeh1, Adam Zalcman1, Hartmut Neven1 & John M. Martinis1,5*

The promise of quantum computers is that certain computational tasks might be 
executed exponentially faster on a quantum processor than on a classical processor1. A 
fundamental challenge is to build a high-fidelity processor capable of running quantum 
algorithms in an exponentially large computational space. Here we report the use of a 
processor with programmable superconducting qubits2–7 to create quantum states on 
53 qubits, corresponding to a computational state-space of dimension 253 (about 1016). 
Measurements from repeated experiments sample the resulting probability 
distribution, which we verify using classical simulations. Our Sycamore processor takes 
about 200 seconds to sample one instance of a quantum circuit a million times—our 
benchmarks currently indicate that the equivalent task for a state-of-the-art classical 
supercomputer would take approximately 10,000 years. This dramatic increase in 
speed compared to all known classical algorithms is an experimental realization of 
quantum supremacy8–14 for this specific computational task, heralding a much-
anticipated computing paradigm.

In the early 1980s, Richard Feynman proposed that a quantum computer 
would be an effective tool with which to solve problems in physics 
and chemistry, given that it is exponentially costly to simulate large 
quantum systems with classical computers1. Realizing Feynman’s vision 
poses substantial experimental and theoretical challenges. First, can 
a quantum system be engineered to perform a computation in a large 
enough computational (Hilbert) space and with a low enough error 
rate to provide a quantum speedup? Second, can we formulate a prob-
lem that is hard for a classical computer but easy for a quantum com-
puter? By computing such a benchmark task on our superconducting 
qubit processor, we tackle both questions. Our experiment achieves 
quantum supremacy, a milestone on the path to full-scale quantum 
computing8–14.

In reaching this milestone, we show that quantum speedup is achiev-
able in a real-world system and is not precluded by any hidden physical 
laws. Quantum supremacy also heralds the era of noisy intermediate-
scale quantum (NISQ) technologies15. The benchmark task we demon-
strate has an immediate application in generating certifiable random 
numbers (S. Aaronson, manuscript in preparation); other initial uses 
for this new computational capability may include optimization16,17, 
machine learning18–21, materials science and chemistry22–24. However, 
realizing the full promise of quantum computing (using Shor’s algorithm 
for factoring, for example) still requires technical leaps to engineer 
fault-tolerant logical qubits25–29.

To achieve quantum supremacy, we made a number of techni-
cal advances which also pave the way towards error correction. We 

https://doi.org/10.1038/s41586-019-1666-5

Received: 22 July 2019

Accepted: 20 September 2019

Published online: 23 October 2019

1Google AI Quantum, Mountain View, CA, USA. 2Department of Electrical and Computer Engineering, University of Massachusetts Amherst, Amherst, MA, USA. 3Quantum Artificial Intelligence 
Laboratory (QuAIL), NASA Ames Research Center, Moffett Field, CA, USA. 4Institute for Quantum Information and Matter, Caltech, Pasadena, CA, USA. 5Department of Physics, University of 
California, Santa Barbara, CA, USA. 6Friedrich-Alexander University Erlangen-Nürnberg (FAU), Department of Physics, Erlangen, Germany. 7Quantum Computing Institute, Oak Ridge National 
Laboratory, Oak Ridge, TN, USA. 8Department of Electrical and Computer Engineering, University of California, Riverside, CA, USA. 9Scientific Computing, Oak Ridge Leadership Computing, 
Oak Ridge National Laboratory, Oak Ridge, TN, USA. 10Stinger Ghaffarian Technologies Inc., Greenbelt, MD, USA. 11Institute for Advanced Simulation, Jülich Supercomputing Centre, 
Forschungszentrum Jülich, Jülich, Germany. 12RWTH Aachen University, Aachen, Germany. 13Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor,  
MI, USA. 14Department of Physics, University of Illinois at Urbana-Champaign, Urbana, IL, USA. *e-mail: jmartinis@google.com

Cover article, 
Nature, 24 Oct 
2019

Google, NASA, ORNL collaboration

https://www.nature.com/articles/s41586-
019-1666-5

https://www.nasa.gov/feature/ames/quantu
m-supremacy



A simple experiment: photon polarization
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Photon Polarization

Polarization state of a photon

can be represented as a 2-dimensional vector of unit length

Taking horizontal |!i and vertical |"i polarizations as a basis, an arbitrary
polarization can be expressed as a superposition

| i = a|"i+ b|!i

with |a|2 + |b|2 = 1

(Allowing a and b to be complex numbers enables this formalism to
describe circular polarization as well)

|vi is Dirac’s notation for vectors. Means the same thing as ~v or v, with v

being the label for the vector

NASA Ames and LANL Introduction to Quantum Computing 11-Nov-2018 11 / 18



Measurement of polarization

Polarization filters are quantum measuring devices

Quantum measurements always occur w.r.t. an orthogonal subspace
decomposition associated with the measuring device

For a horizontal polarization filter, the basis in which it measures is |!i,
together with its perpendicular |"i

A photon with polarization a|"i+ b|!i is measured by a horizontal filter
as |"i (absorbed) with probability |a|2, and

|!i (passed) with probability |b|2

Any photon that has passed through the filter now has polarization |!i.

Polarization filters at other angles work in a similar way

NASA Ames and LANL Introduction to Quantum Computing 11-Nov-2018 12 / 18



Quantum bits, or qubits

Think polarization states of a photon!

Any 2-dimensional quantum system can be viewed as the fundamental unit
of quantum computation, a quantum bit or qubit.
Qubit state space is a 2-dimensional complex vector space

A computational basis is chosen, denoted |0i and |1i, and used to encode
classical bit values 0 and 1

Possible qubit values a|0i+ b|1i, for complex a, b with |a|2 + |b|2 = 1.

Unlike classical bits, qubits can be in superposition states such as
1p
2
(|0i+ |1i) or 1p

2
(|0i � i |1i)

NASA Ames and LANL Introduction to Quantum Computing 11-Nov-2018 13 / 18



How State Spaces Combine

Let X be a vector space with basis {|↵1i, . . . , |↵ni} and Y be a vector
space with basis {|�1i, . . . , |�mi}

Classical state spaces combine via
the Cartesian product

X ⇥ Y has basis
{|↵1i, . . . , |↵ni, |�1i, . . . , |�mi}

dim(X ⇥ Y ) = dim(X ) + dim(Y )

= n +m

Quantum state spaces combine via
the tensor product

X ⌦ Y has basis
{|↵1i⌦ |�1i, |↵1i⌦ |�2i, . . . , |↵ni⌦ |�mi}

dim(X ⌦ Y ) = dim(X ) ⇤ dim(Y )

= n ⇤m

NASA Ames and LANL Introduction to Quantum Computing 11-Nov-2018 15 / 18



Entangled states

Entangled states cannot be written as tensor product of independent qubits

Example: An EPR pair 1p
2
(|00i+ |11i)

(a0|0i+ b0|1i)⌦ (a1|0i+ b1|1i)
= a0a1|00i+ a0b1|01i+ b0a1|10i+ b0b1|11i
6= a0a1|00i+ 0|01i+ 0|10i+ b0b1|11i

=
1p
2
(|00i+ |11i)

Measurement of the first qubit yields either |0i or |1i
Measurement changes state to either |00i or |11i
Measurement of second qubit gives same result as first

Similar results when measuring in other bases

NASA Ames and LANL Introduction to Quantum Computing 11-Nov-2018 17 / 18



Application focus areas
Planning and scheduling   Robust networks
Fault Diagnosis Machine Learning
Material science simulations

Programming quantum computers
Quantum algorithm design
Mapping, parameter setting, error mitigation
Hybrid quantum-classical approaches
Compiling quantum algorithms to hardware

QC à state-of-the-art classical solvers

Physics insights into quantum algorithm and 
quantum hardware design

Quantum-enhanced 
applications

QC programming
Novel classical solvers

Physics Insights
Analytical methodsSimulation tools

Quantum Computing at NASA 



AQO
• Evolution under

• Slowly enough to 
stay in the ground 
subspace 

QA
• Evolution under

• Many quick runs, 
thermal effect 
contribute

Quantum Optimization Algorithms: AQO, QA, QAOA
Common elements: Given cost function C(z),
• Phase separation operator based on the cost function,

Usually based on !" = −% & |&⟩⟨&|, often including additional “penalty 
terms” to enforce constraints

• Driver/Mixing operator 

Most frequently !* = ∑
,
-., though we will shortly see other mixers

/(1) = 3(1)!" + 5(1)!* /(1) = 3(1)!" + 5(1)!*

QAOA
• Alternate 

application of !"
and !*

• For p alterations, the 
parameters are 67
times/angles
89, ;9, …8=, ;7



Based on the Quantum Approximate 
Optimization Algorithm
• A gate model heuristic due to Farhi et al.
• Iterates between two Hamiltonians, p 

times, applied for times βi and ɣi
– Phase separation (encodes cost 

function) 
– Mixing 

Early results by Farhi and co-authors
• p → ∞: from AQO

– Converges to optimum for p → ∞
• p = 1: from IQP circuits 

– Provably hard to sample output 
efficiently classically (up to standard 
complexity theory conjectures)

– Beat existing classical approximation 
ratio on MaxE3Lin2 only to inspire a 
better classical algorithm

QAOA
Quantum Alternating Operator Ansatz, 
generalizing Farhi et al., QAOA

- More general mixing operators
- Inspired by compilation concerns, thus 

enabling earlier evaluation on nearer-term 
hardware
- Incorporates hard constraints into mixer 

instead of as a penalty term
Algorithm explores only feasible subspace, 
often exponentially smaller, so more 
efficient search

We have mapped many optimization 
problems to the QAOA formalism

Wang, Rubin, Dominy, Rieffel.  XY mixer for QAOA on 
graph coloring problems. (To appear)

S. Hadfield et al., From the Quantum Approximate Optimization Algorithm to a 
Quantum Alternating Operator Ansatz, Algorithms 12 (2), 34 2019



Advantage of XY-mixer
New algorithm for Grover’s problem
- QAOA circuit  O( √N) query complexity 

- Trotterizing Roland-Cerf loses O( √N) q.c.

- Demonstrates utility of periodic 
parameters 
- Coherent state analysis

Analysis of QAOA on ring
- Mapping to Jordan-Wigner 

- Explains parameter symmetries
- Provides orders of magnitude more efficient 
numerical investigation

Wang, Hadfield, Jiang, Rieffel. QAOA for MaxCut: A Fermionic View. PRA
(2018)

Jiang, Rieffel, Wang, Near-optimal quantum circuit for Grover's unstructured 
search using a transverse field. PRA (2017)Confirmed advantage of mixers 

that maintain evolution within 
feasible subspace
• Exponentially smaller subspace, 

but still exponentially large
• Ratio shrinks exponentially with n: 
• -

Numerical results: approximation ratio for 3-coloring a triangle 
(Left) QAOA with std X-mixer. (Right) QAOA with XY-mixer  

4

where the weight parameter ↵ 2 R+. Note that in Eq. (8)
the penalty Hamiltonian is subtracted because we aim
to maximize the original cost function and minimize the
penalty. In order for the penalized function to have the
same optima as the original cost function, the penalty
weight needs to be set above a critical value. In the cur-
rent problem, assigning more than one color to a vertex is
not energetically favorable, so it is the opposite, assign-
ing no color to a vertex that may create fake maxima.
Since for every no-color vertex, there are at most bdv/c
edges lifted from being improper, the penalty should sat-
isfy ↵ > bmax{dv}/c, we can loosely take ↵ � n/.
On the other hand, the range of possible values of fC
(and of spectral values of HC) is m. Therefore, any
↵ > m will ensure an energy separation between all
feasible states and all unfeasible states.

It should be noted that, unlike the motivating situa-
tion in adiabatic computation, the energy gap plays no
clear role in QAOA. Thus it should be expected that,
while the introduction of a penalty into the cost Hamil-
tonian may alter the QAOA dynamics, perhaps manip-
ulating the reachable set of unitary operators, the role
of the penalty strength is unclear at best. This per-
spective is supported by the numerical results in Section
V A. Indeed, while for some problems, such as the one-
hot-encoded problems under consideration, sophisticated
mixers can be designed to satisfy the constraints [2], the
design of general and systematic methods for incorporat-
ing constraints into QAOA remains an open problem.

In the penalty formulation the mixer can be either the
standard X-driver

HX =
nX

v=1

X

c=1

�x

v,c
(9)

or the XY -Hamiltonian. If the XY -Hamiltonian is se-
lected the penalty parameter may help the variational
optimizer maintain probability mass in the feasible sub-
space and is not strictly necessary. In QAOA, it is un-
clear how a penalty parameter helps maintain probability
mass over the feasible subspace. The feasible space of a
-coloring problem is the set of states that satisfy

Ztot,v ⌘
X

c=1

�z

v,c
= � 2 , (10)

i.e., a subspace spanned by states in the computational
basis that correspond to bit strings of Hamming weight
equal to one.

Although formulating the penalty Hamiltonian facili-
tates the use of the standard X-mixer in QAOA, which
can be implemented in constant circuit depth, we empha-
size that the relative size of the feasible space becomes
exponentially small as the graph size grows and thus a
penalty formulation is sub-optimal. To see this, consider
the size of the feasible subspace Hfea, for each node, the
feasible subspace can be spanned by states corresponding

to  Hamming-weight one bit-strings, hence is of dimen-
sion k, and the feasible subspace for the whole problem is
of dimension kn. The ratio of the feasible subspace sizes
to the size of the full Hilbert space is

dim(Hfea)

dim(H)
=

n

2n
=

� 

2
�n

, (11)

which for any  � 1 shrinks exponentially with the graph
size n.

B. The XY mixer: enforcing evolution in the
feasible subspace

The Ztot,v constraint can be incorporated in a natural
way by selecting a mixing term that preserves the feasible
subspace. Here we use the XY -Hamiltonian

HXY,v =
1

2

X

c,c02K

HXY,v,c,c0 (12)

HXY,v,c,c0 = �x

v,c
�x

v,c0 + �y

v,c
�y

v,c0 . (13)

which drives rotations in the {(0, 1), (1, 0)} subspace of
each color labeling. In the above equation the mixer ap-
plies to any color pair c, c0 in a set K. It can be verified
that for any K, [HXY,v, Ztot,v] = 0.

1. Complete vs ring mixing Hamiltonians

In Eq. (12), when the mixing-set K includes all pairs,
the mixer is termed complete-graph mixer. An alterna-
tive is the ring mixer in which K takes a one-dimensional
structure: c0 = c+1 and apply periodic boundary condi-
tion. In the same fashion, there are a variety of derivative
mixers based on the XY -Hamiltonian, depending on the
underlying connectivity between colors. We focus on the
complete-graph and the ring mixers.

2. Simultaneous vs partitioned mixers

For a given mixing Hamiltonian, Eq. (12), for each
node, a simultaneous mixer exactly applies the unitary
exp[�i�HXY,v] while a partitioned mixer applies the
product of exp[�i�HXY,v,c,c0 ] in some order of {(c, c0)}.
We define the parity-partition mixer such that a local
XY -Hamiltonian is applied on even pairs first and odd
pairs next.

The parity-partitioned mixing unitary is a first-order
approximation of the simultaneous mixing unitary. Em-
ploying the Zassenhaus formula through second order

eit(Heven+Hodd) ⇡ eitHeveneitHodde
t2

2 [Heven,Hodd] (14)

allows us to characterize the leading error term
e�t

2
/2[Heven,Hodd] as a function of . For simplicity, we

Parameter setting

Zhihui Wang, Nicholas C. Rubin, Jason M. Dominy, Eleanor G. Rieffel, 
XY-mixers: analytical and numerical results for QAOA, arXiv:1904.09314 



Example investigations of quantum mechanisms
The Power of Pausing

Pausing at good time in anneal increases 
performance by orders of magnitude

Correct model of annealing required.
Pause effective where thermalization slows 

(rather than at minimum gap)
Collaboration: Illustrates effective feeding 

of information into quantum hardware 
design from users and theorists

Harnessing quantum MBDL 
for quantum computation 

Hybrid opt. alg.: Quantum band tunneling 
combined with greedy descent
- Obtain square-root speed up in random 
energy model 
- Totally different mechanism than Grover

Collaboration with Google
J. Marshall, D. Venturelli, I. Hen, E. Rieffel, The power of pausing: advancing 
understanding of thermalization in experimental quantum annealers, 
accepted Phys Rev Applied, 2019

K. Kechedzhi et al., Efficient population transfer via non-ergodic extended 
states in quantum spin glass, arXiv:1807.04792
V. Smelyanskiy et al., Non-ergodic delocalized states for efficient population 
transfer within a narrow band of the energy landscape, arXiv:1802.09542 

Key concept: Band 
Tunneling induced by 
quantum many-body 

delocalization (MBDL).
Population transfer 

occurs within a network 
of resonances

!( n)
|υ1〉

|υ2〉

|υ3〉

|υ4〉

|υk〉

!(&)

'|)*+ − )*-|
.

*/0
= 2+- = 3	 &

Hamming distance

Bitstrings

0

Greedy descent

Band 
Tunneling



Application focus areas
Planning and scheduling   Robust networks
Fault Diagnosis Machine Learning
Material science simulations

Programming quantum computers
Quantum algorithm design
Mapping, parameter setting, error mitigation
Hybrid quantum-classical approaches
Compiling quantum algorithms to hardware

QC à state-of-the-art classical solvers

Physics insights into quantum algorithm and 
quantum hardware design

Quantum-enhanced 
applications

QC programming
Novel classical solvers

Physics Insights
Analytical methodsSimulation tools

Quantum Computing at NASA 



Robust Communication Network Design

Surrogate problem: minimum weighted spanning tree with degree constraints 

Future of air traffic
– Higher vehicle density
– Heterogeneous vehicles
– Mixed equipage
– Greater autonomy

Challenge: assure 
communication 

availability



Pause shift for degree bounded spanning trees
Robust communications networks 
- assuring communication availability
- essential for airspace with increasing vehicle density 
and diversity including small Unmanned Aerial Systems 
(sUAS)

surrogate problem: minimum degree-bounded spanning 
tree within a communications graph

Demonstrated effectiveness of an annealing pause on 
these instances

- confirmed pause  on embedded instances 
demonstrated, 

- confirmed theory that pause location shift earlier in 
anneal with increasing ferromagnetic coupling

Effectiveness of partial gauge transformation for hardware 
with asymmetric parameter ranges

Shift in the best pause location with increasing Jf
Probability of success (y-axis) pause location (x-axis)

Effect of 100 partial gauges on Psuccess with Jf = -1.6

J_f = -1.2

J_f = -1.4J_f = -2.0



Simulating quantum systems

Quantum Simulation is one 
of the important applications 
we expect to run on quantum 
computers.



Simulating quantum systems

Quantum Simulation is one 
of the important applications 
we expect to run on quantum 
computers.

There are two popular algorithms that have been suggested for quantum simulation:

1) Variational Quantum Eigensolver (similar to variational Monte Carlo)
2) Phase Estimation (An algorithm based on time evolution)



The need for high fidelity wave functions

Good wave functions are needed for virtually all 
quantum algorithms.  High overlap with ground 
states needed for phase estimation.  Even higher 
needed for VQE, although optimization is possible
with a quantum computer.

The full wavefunction has exponential
number of degrees of freedom.  



The need for high fidelity wave functions

What are good algorithms
for generating wave 
functions (created classically) 
on quantum computers?

G2 Set of 55 molecules.  Includes
(molecules consisting of C,N,H,SI,O).

Hartree-Fock fidelities ploted with different
approximations for the molecular
Hamiltonian.

Good wave functions are needed for virtually all 
quantum algorithms.  High overlap with ground 
states needed for phase estimation.  Even higher 
needed for VQE.

The full wavefunction has exponential
number of degrees of freedom.  

Overlap/Fidelities for 55 molecules



Real Material Simulations

Recent advances have shown that a 
log(N) number of qubits can be used to 
simulate N plane waves

First quantized approaches for quantum 
computers have  recently been developed 
and are  promising.

Neven Barišić et al. PNAS 2013

Various mappings can provide approximate 
Hamiltonians suitable for simulation on near term 
hardware. 

Resource estimates for both exact and 
approximate forms demonstrate that as quantum 
computing power increases, so will simulation 
accuracy.

Many potential NASA applications include 
catalysis, battery materials, high temperature 
superconductivity, magnetic materials and more..



Quantum machine learning

Max Wilson, Tad Hogg & Eleanor Rieffel, Quantum-assisted associative 
adversarial network, arXiv:1904.10573

Scalable quantum-
assisted GAN 
demonstrated on 
large continuous-
valued color
datasets (CIFAR 
Bedrooms)

Quantum-assisted associative 
adversarial network

Optimizing quantum heuristics 
with meta-learning

More near-optimal solutions in a noisy 
environment

Learning to learn to 
optimize variational 
quantum algorithms 
with machine 
learning

Better performance of 
meta-learner 
(optimizer) than 
closest comparable 
competitor
Tested (L-BFGS)

Max Wilson, Rachel Stromswold, Filip Wudarski, Stuart Hadfield, Norm 
M. Tubman, Eleanor Rieffel, Optimizing quantum heuristics with meta-
learning, arXiv:1908.03185



Application focus areas
Planning and scheduling   Robust networks
Fault Diagnosis Machine Learning
Material science simulations

Programming quantum computers
Quantum algorithm design
Mapping, parameter setting, error mitigation
Hybrid quantum-classical approaches
Compiling quantum algorithms to hardware

QC à state-of-the-art classical solvers

Physics insights into quantum algorithm and 
quantum hardware design

Quantum-enhanced 
applications

QC programming
Novel classical solvers

Physics Insights
Analytical methodsSimulation tools

Quantum Computing at NASA 



Compiling quantum algorithms to realistic hardware
Collaboration with

- Domain experts at NASA, utilizing state of 
the art temporal planners
- Rigetti, Google, and IBM hardware 
constraints

Currently extending beyond superconducting 
qubit devices, e.g. ion-trap quantum 
processors

Proven bounds on compilation, application to:
• QAOA
• Quantum simulation of Fermionic systems

D Venturelli, M Do, E Rieffel, J Frank., Compiling quantum circuits to realistic 
hardware architectures using temporal planners, Quantum Science and 
Technology (2018) 

Compilation of algorithms to a NISQ 
processor requires
• Decomposition into native gates 
• Qubit routing

Qubit routing moves qubit states to 
locations where desired gates can be 
implemented
• insert SWAP operations to handle limited 

connectivity

Pioneered temporal planning for compilation
to NISQ devices
• Minimize makespan
• combined temporal planning with 

constrained programming 

KEC Booth, M Do, JC Beck, E Rieffel, D Venturelli, J Frank , Comparing and 
integrating constraint programming and temporal planning for quantum 
circuit compilation, ICAPS (2018)

Bryan O'Gorman, William J. Huggins, Eleanor G. Rieffel, K. Birgitta Whaley, Generalized 
swap networks for near-term quantum computing, arXiv:1905.05118



Evaluation criteria

Analytically proven guarantees:
• Provable quantum speed-up (Grover)
• Strong quantum speed-up (Shor)

Numerical evaluation:
• Limited quantum speed-up

– Compared with current best classical 
approach 

• Limited Non-tailored quantum speed-up
– Current best generic classical alg. not 

tailored to a particular problem
• Limited Tailored quantum speed-up

– Current best classical alg., explicitly tailored 
to problem at hand

Evaluating algorithm performance

Mandra, Zhu, Want, Perdomo-Ortiz, Katzgraber, Strengths and 
weaknesses of weak-strong cluster problems: A detailed overview of 
state-of-the-art classical heuristics vs quantum approaches. PRA 
(2016)

Physics-inspired classical algorithms

State-of-the-art classical algs. 
- Open-boundary Quantum Monte Carlo (QMC) [1]
- Population Annealing [2]
- Isoenergetic Cluster Method [3]
- Hybrid Cluster Method [4]
- Super-spin [5]

Collaboration with Katzgraber’s group at TAMU

Unified Framework for Optimization (UFO)
Increasingly Tailored

[1] Z. Jiang, V. Smelyanskiy, S. Boixo & H. Neven, Path-Integral Quantum Monte 
Carlo with Open-Boundary Conditions, arXiv:1708.07117, 2017

[2] W. Wang, J. Machta & H.G. Katzgraber, Population annealing: Theory and 
application in spin glasses, PRA (2015)

[3] Z. Zhu, A.J. Ochoa & H.G. Katzgraber, Efficient cluster algorithm for spin 
glasses in any space dimension, PRL (2015)

[4] D. Venturelli, S. Mandrà, S. Knysh, B. O’Gorman, R. Biswas & V. Smelyanskiy, 

Quantum optimization of fully connected spin glasses, PRX (2015)

[5] S. Mandrà, Z. Zhu, W. Wang, A. Perdomo-Ortiz, H.G. Katzgraber, Strengths 
and weaknesses of weak-strong cluster problems: A detailed overview of state-
of-the-art classical heuristics versus quantum approaches, PRA (2016)



Classical HPC simulation of quantum circuits
Advanced the state-of-the-art

- can simulate larger quantum circuits than 
any previous approach
- judicious use of cuts within a tensor 
network contraction
- HPC memory tricks and trade-offs
- can flexibly incorporate fidelity goal

Largest computation run on NASA HPC clusters
- 60-qubit subgraph, depth 1+32+1 
- 116,611 processes on 13,059 nodes, peak 
of 20 PFLOPS, 64% of max
- across  Pleiades, Electra, Hyperwall
Applications
- quantum supremacy experiments
- benchmark emerging quantum hardware
- empirically explore quantum algorithms

Villalonga et al., A flexible high-performance simulator 
for the verification and benchmarking of quantum 
circuits implemented on real hardware. 
NPJ Quantum Information 5, 1-16 
Villalonga et al., Establishing the Quantum Supremacy 
Frontier with a 281 Pflop/s Simulation, arXiv:1905.00444

Computed exact amplitudes for 72 qubit 
Bristlecone random circuit, depth 1+32+1



Quantum Supremacy

Example random quantum circuit. Every cycle includes 
a layer of single- and two-qubit gates. The single-qubit 
gates are chosen randomly from a set of three gates. The 
sequence of two-qubit gates follow a tiling pattern, 
coupling each qubit sequentially to its four neighbors.

24 Oct 2019

How do you verify a 
computation that no 
other hardware can do?
- check smaller version
- check pieces
- check variants that are 

simpler to simulate

• Entering an era of 
unprecedented ways to 
explore quantum 
algorithms.

• Era of quantum 
heuristics. 

• These explorations will 
broaden the known 
application of quantum 
computing.



Quantum-Enhanced 
NASA Applications

Quantum Tools
and Programming

Novel Classical Solvers
and Simulators

Q Comm & Q Networks

Quantum Algorithms

Fundamental Physics Insights

Networking quantum processors enables 
larger quantum computations
Connecting classical and quantum 
processors supports hybrid methods
Connecting limited capability quantum 
devices to QCs enables delegated quantum 
computing 
Verifiable QC enables client to determine if 
desired quantum computation has been 
performed

Means to benchmark prototype quantum 
computing hardware

Security applications in the long term
Blind quantum computing enables client to 

use QC without QC provider learning 
anything about computation

Envision a heterogeneous landscape, with 
a variety of quantum processors, with 
differing strengths



A Historical Perspective
Illiac IV - first massively parallel computer 

- 64 64-bit FPUs and a single CPU 
- 50 MFLOP peak, fastest computer at 
the time 

Finding good problems and algorithms 
was challenging

Questions at the time:
- How broad will the applications be of 
massively parallel computing?
- Will computers ever be able to 
compete with wind tunnels? 

NASA Ames director Hans Mark brought 
Illiac IV to NASA Ames in 1972 



Take away points
Quantum-
enhanced 
applications

QC programming
Novel classical 
solvers

Physics Insights

Analytical 
methods

Simulation 
tools

Deep connection between fundamental physics and 
computer science 
- How fast does nature let us compute?
- Many open questions remain

The next years will be even more exciting!
- Quantum hardware improvements will support yet 

larger  and more powerful computations
- Unprecedented opportunity to investigate quantum 

algorithms and quantum mechanisms on a larger scale

Please talk with us about your most challenging 
computational problems!



NASA QuAIL Team 
NASA Ames Research Center

Eleanor G. Rieffel, Stuart Hadfield, Tad Hogg, Salvatore Mandrà, Jeffrey Marshall, Gianni Mossi, Bryan 
O'Gorman, Eugeniu Plamadeala, Norm M. Tubman, Davide Venturelli, Walter Vinci, Zhihui Wang, Max 
Wilson, Filip Wudarski, Rupak Biswas, From Ansätze to Z-gates: a NASA View of Quantum Computing, 
arXiv:1905.02860

Rupak Biswas, Zhang Jiang, Kostya Kechezhi, Sergey Knysh, Salvatore Mandrà, Bryan O'Gorman, 
Alejandro Perdomo-Ortiz, Andre Petukhov, John Realpe-Gómez, Eleanor Rieffel, Davide Venturelli, Fedir
Vasko, Zhihui Wang, A NASA Perspective on Quantum Computing: Opportunities and Challenges, 
Parallel Computing, Volume 64, May 2017, p. 81-98, arXiv:1704.04836
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